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Advanced Micro Devices Inc.

● Based in Santa Clara, CA
● American multinational 

semiconductor manufacturing 
company

● Develops computer processors 
and technologies for business 
and consumer markets
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Image source: Hexus



AMD Research

● AMD main products: 
○ Processors and motherboard chipsets
○ Central Processing Units (CPUs)
○ Graphic Processing Units (GPUs) 

● Goal: research novel scientific applications where the use of GPUs is emphasized 
● Neural Network is a big application of GPUs
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Wave Propagation

● Waves are everywhere: sound waves, light waves, ocean waves
● Used in everything from earthquake detection to ultrasound imaging
● Simulation time with traditional methods can take days and weeks!

Is there an alternative?

Image source: https://doi.org/10.1007/978-3-319-57852-1_4 
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Neural Network as an Alternative

● Neural Networks are models approximating 
an unknown function (    )

● Once trained, they have very fast prediction 
time

● We want to find       to approximate the wave 
equation
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Inputs Outputs   Model



Defining Neural Networks

● Parameters: weights (W) and biases (b)
● Transformation includes:

○ Linear transform (W and b)
○ Nonlinear activation (      )
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● NNs approximate unknown mapping



Defining Neural Networks

Image Source: https://towardsdatascience.com/DNN

● Parameters: weights (W) and biases (b)
● Transformation includes:

○ Linear transform (W and b)
○ Nonlinear activation (      )
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● NNs approximate unknown mapping



● Training Neural Networks:
○ Collect data 
○ Solve an optimization problem 

by minimizing the loss function
○ Loss is error between model 

output and true output data

Training Neural Networks
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Image Source: https://deeplearningdemystified.com/articleDNN



Interpolation and Extrapolation
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Training Data



Interpolation and Extrapolation
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Interpolation Extrapolation



Neural Network models can’t extrapolate...

Image Source: QXplore: Q-learning Exploration by Maximizing 
Temporal Difference Error
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● Neural Network models: 
○ approximate unknown mapping
○ trained with data 

● Example: 
○ Target function: y = 0
○ NN good at interpolation (grey)
○ NN bad at extrapolation (white)



Physics-Informed Neural Networks (PINNs)

● Recent research:

○ Physics Informed Neural Networks

○ Train NNs with differential equations 

describing physical systems

○ PINNs successfully extrapolate and 

ensure physically consistent output
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Image Source: https://www.researchgate.net/PINN

https://www.researchgate.net/figure/Physics-informed-neural-networks-The-left-physics-uninformed-network-represents-the_fig1_337589857


Project Description

Implement physics-informed neural network algorithm to 
accurately extrapolate the wave equation

Image source: https://www.ibm.com/cloud/learn/neural-networks 
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Overview

● Introduction 
● Neural Networks - Amelia
● Paraboloid Extrapolation - Bhargav
● Wave Equation Extrapolation - Ben
● Weight Analysis - David
● Conclusion - Cherlin
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Target Function: Paraboloid (Toy Problem)
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Main Goal: Improve accuracy of network in extrapolation region



Data Sampling for Baseline Model
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Uniform random sampling of labeled points from 
the interpolation region

Loss Function:



Baseline Model

Interpolation Region Error Avg* 
1.79E-3

Extrapolation Region Error Avg*
8.46E-1

*RMSE averaged across 10 trials
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Physical Constraints
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Data Sampling for PINN Model
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Uniform random sampling of labeled points from 
the interpolation region

Loss Function Example:



Data Sampling for PINN Model
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Uniform random sampling of collocation points 
from the extrapolation region

Loss Function Example:



Data Sampling for PINN Model
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Uniform random sampling of labeled points from 
the interpolation region and collocation points from 
the extrapolation region

Loss Function Example:



Gradient Regularizer Results
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Baseline Model 1st Order Regularizer 2nd Order Regularizer 3rd Order Regularizer

Interpolation 
Region Error 
Avg*

1.79E-3 2.18E-2 1.39E-3 5.11E-3

Extrapolation 
Region Error 
Avg*

8.46E-1 1.19 3.00E-3 1.90E-2

*RMSE averaged across 10 trials



Further Results
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Pure Interpolation
(10,000 points with no physics 

information)

2nd Order Regularizer
(2500 labeled Int, 7500 collocation Ext)

Interpolation Region 
Error Avg*

1.79E-3 1.39E-3

Extrapolation Region 
Error Avg*

3.02E-3 3.00E-3

*RMSE averaged across 10 trials



Target Function: Wave equation

First Order System of Wave 
Equation

Reflective Boundary 
Conditions
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Simulation

● Gaussian Initialization
● Data from simulation used as 

input for Neural Network
● Interpolation for 
● Extrapolation for 
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Simulation

● Gaussian Initialization
● Data from simulation used as 

input for Neural Network
● Interpolation for 
● Extrapolation for 
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Baseline

t = 0.60
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t = 0.80 t = 1.00



Baseline
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Neural Networks



Physics-Informed Neural Network
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Second Order
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Boundary Conditions
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Interpolation Results

t = 0.6 t = 1.0t = 0.2
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Interpolation results
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Average interpolation error: 
1.04E-2



Extrapolation Results

Model (    )

t = 1.2 t = 1.6 t = 2.0
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Extrapolation Results
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Average extrapolation error: 

2.33E-2



Errors for Wave

36

Pure Interpolation Gradient Regularizers

Interpolation Region 
Error

6.0E-4 1.04E-2

Extrapolation Region 
Error

1.66E-1 2.33E-2



Source Location as an Input

Previous model:

New model:
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Source Location as an Input

Previous model:

New model:
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Training Data
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Combined 5 simulations, each
with different source locations
for dataset



A Preliminary Result
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Physics-based Simulation        

Source: 
(0.8, 0.9)

NN Modelvs.



Comparing Error
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Avg. error Avg. error



Comparing Error
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● Blue - gradient regularizer lowers 
error

● Red - gradient regularizer does not 
lower error



A simple question
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● Problem:
○ Even PINNs can’t extrapolate beyond extrapolation region

■ Need collocation points

● Question:
○ Is it possible for a neural network to extrapolate indefinitely?
○ If not, can we predict which regions a model fails?



Paraboloid Revisited
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Paraboloid: PINN:



Taking a bird’s eye view...

● NNs failure to extrapolate is systematic
● NNs tune to their training region 

(using elu)

● Large scale → reduce to trivial function
○ Determined by activation
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Paraboloid: PINN:



Taking a bird’s eye view...

● NNs failure to extrapolate is systematic
● NNs tune to their training region 

(using tanh)

● Large scale → reduce to trivial function
○ Determined by activation
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PINN:Paraboloid:



What causes NNs to reduce?

active range

active range

saturatedsaturated

linear

● Neurons “saturate” from large input
○ End behavior

● Neurons tune their “active range” to 
training region

● Key Idea: 
Modeling a complex target 
requires unsaturated neurons

● Hypothesis: 
NN saturated → NN will 
extrapolate poorly

● We develop a saturation measure
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Saturation across domain: Paraboloid

BaselinePINN Difference

● Saturation of first layer
○ On [-4, 4] square
○ Average of 5 runs
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(training data)



Saturation across domain: Paraboloid
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PINN

Baseline

Difference

(training data)



Saturation: Parabola vs Cubic
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Cubic 
Difference

Paraboloid 
Difference



Conclusion

● Modeled paraboloid with higher extrapolation accuracy than pure interpolation

● Successfully extrapolated wave equation using PINNs

● Created model that predicts behavior of wave with different source locations

● Developed metric for measuring saturation of neuron weights
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Thank you so much to Laurent, Kyung, the whole 
AMD team, and IPAM!
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Questions?
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Physical Constraints
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Further Results
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Pure Interpolation
(10,000 points with no 
physics information)

2nd Order Regularizer
(2500 labeled Int, 7500 

collocation Ext)

Interpolation + 2nd Order 
Regularizer (10,000 points 

Int+Ext)

Interpolation 
Region Error Avg*

1.79E-3 1.36E-3 5.36E-4

Extrapolation 
Region Error Avg*

3.02E-3 2.53E-3 9.40E-4

*RMSE averaged across 10 trials



Gradual Loss Change
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Learning Rate Change
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Data Sampling 

● Various parameters regarding data 
preprocessing
○ Interior vs. Boundary
○ Interpolated vs. Extrapolated
○ Randomly vs. Uniformly

● Sample again for test points
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Gradient regularizers:
● Boundary added at 400
● First order added at 900

Adding More Boundary Points
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Without gradient

With gradient

Epochs



Github and Config files

60



Code Organization/Collaboration

Coding process:
● Small changes can be made on individual machine
● Large changes are made in a branch
● All merged into main branch
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Experiment Management
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● Config files
○ many levers to adjust



Measuring saturation (cont.)

● Goal: Quantify saturation of a layer 

l with input x

● Saturation of layer:
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Error Analysis

Test set sources Heatmap of error on Dataset 2 (random)
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Error Analysis

Test set sources
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Heatmap of error



Different Training Data

Uniform source points (Dataset 1) Random source points (Dataset 2)
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Saturation across domain: Paraboloid
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Gradient Regularized:

Baseline:

Difference:

(training data)



Saturation across domain: Cubic
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Gradient Regularized:

Baseline:

Difference:

(training data)


