

Accelerating Scientific Applications with Deep Neural Networks

AMD RIPS 2021 Institute for Pure and Applied Mathematics

David Davini, Bhargav Samineni, Ben Thomas, Amelia Tran, Cherlin Zhu

Industry Mentor: Laurent White Academic Mentor: Kyung Ha

Advanced Micro Devices Inc.

- Based in Santa Clara, CA
- American multinational semiconductor manufacturing company
- Develops computer processors and technologies for business and consumer markets

Image source: Hexus

AMD Research

- AMD main products:
 - Processors and motherboard chipsets
 - Central Processing Units (CPUs)
 - Graphic Processing Units (GPUs)
- Goal: research novel scientific applications where the use of GPUs is emphasized
- Neural Network is a big application of GPUs

Wave Propagation

- Waves are everywhere: sound waves, light waves, ocean waves
- Used in everything from earthquake detection to ultrasound imaging
- Simulation time with traditional methods can take days and weeks!

Is there an alternative?

Image source: https://doi.org/10.1007/978-3-319-57852-1_4

Neural Network as an Alternative

- Neural Networks are models approximating an unknown function (f)
- Once trained, they have very fast prediction time
- We want to find \hat{f} to approximate the wave equation

Defining Neural Networks

- NNs approximate unknown mapping
- Parameters: weights (W) and biases (b)
- Transformation includes:
 - Linear transform (W and b)
 - \circ Nonlinear activation (σ)

$$\mathbf{a}^{(i)} = \sigma(\mathbf{W}^{(i)}\mathbf{a}^{(i-1)} + \mathbf{b}^{(i)})$$
$$\mathbf{a}^{(L)} = \hat{f}_{\mathbf{W}, \mathbf{b}}(\mathbf{x})$$

Input Data

Defining Neural Networks

- NNs approximate unknown mapping
- Parameters: weights (W) and biases (b)
- Transformation includes:
 - Linear transform (W and b)
 - \circ Nonlinear activation (σ)

$$\mathbf{a}^{(i)} = \sigma(\mathbf{W}^{(i)}\mathbf{a}^{(i-1)} + \mathbf{b}^{(i)})$$
$$\mathbf{a}^{(L)} = \hat{f}_{\mathbf{W}, \mathbf{b}}(\mathbf{x})$$

Image Source: https://towardsdatascience.com/DNN

Training Neural Networks

- Training Neural Networks:
 - Collect data
 - Solve an optimization problem by minimizing the loss function
 - Loss is error between model output and true output data

$$\mathbf{W}^*, \mathbf{b}^* = \underset{\mathbf{W}, \mathbf{b}}{\operatorname{arg min}} L(f, \hat{f}_{\mathbf{W}, \mathbf{b}})$$

Image Source: https://deeplearningdemystified.com/articleDNN

Interpolation and Extrapolation

Training Data

Interpolation and Extrapolation

Extrapolation

Neural Network models can't extrapolate...

- Neural Network models:
 - approximate unknown mapping
 - trained with data
- Example:
 - Target function: y = 0
 - NN good at interpolation (grey)
 - NN bad at extrapolation (white)

Image Source: QXplore: Q-learning Exploration by Maximizing Temporal Difference Error

Physics-Informed Neural Networks (PINNs)

Recent research:

- Physics Informed Neural Networks
- Train NNs with differential equations describing physical systems
- PINNs successfully extrapolate and ensure physically consistent output

Image Source: https://www.researchgate.net/PINN

Project Description

Implement physics-informed neural network algorithm to accurately extrapolate the wave equation

Overview

- Introduction
- Neural Networks Amelia
- Paraboloid Extrapolation Bhargav
- Wave Equation Extrapolation Ben
- Weight Analysis David
- Conclusion Cherlin

Target Function: Paraboloid (Toy Problem)

Main Goal: Improve accuracy of network in extrapolation region

Data Sampling for Baseline Model

Uniform random sampling of labeled points from the interpolation region

Loss Function:

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left(f\left(\mathbf{x}^{\{i\}}\right) - \hat{f}\left(\mathbf{x}^{\{i\}}\right) \right)^{2}$$

Baseline Model

Interpolation Region Error Avg* 1.79E-3

Extrapolation Region Error Avg* 8.46E-1

Physical Constraints

$$f(x,y) = ax^2 + by^2$$

Third Order Partials

Third Order Regularizer

$$E_{\text{third}}\left(\hat{f}, \mathbf{x}^{\{i\}}\right) = \left|\hat{f}_{xxx}\left(\mathbf{x}^{\{i\}}\right)\right| + \left|\hat{f}_{xxy}\left(\mathbf{x}^{\{i\}}\right)\right| + \dots$$
$$+ \left|\hat{f}_{yyx}\left(\mathbf{x}^{\{i\}}\right)\right| + \left|\hat{f}_{yyy}\left(\mathbf{x}^{\{i\}}\right)\right|$$
$$\approx 0$$

Data Sampling for PINN Model

Uniform random sampling of labeled points from the interpolation region

Loss Function Example:

$$\mathcal{L}_{\text{int}} = \frac{1}{N} \sum_{i=1}^{N} \left(\left(f\left(\mathbf{x}^{\{i\}}\right) - \hat{f}\left(\mathbf{x}^{\{i\}}\right) \right)^{2} + \lambda E_{\text{third}}\left(\hat{f}, \mathbf{x}^{\{i\}}\right) \right)$$

Data Sampling for PINN Model

Uniform random sampling of collocation points from the extrapolation region

Loss Function Example:

$$\mathcal{L}_{ ext{ext}} = rac{\lambda}{N} \sum_{i=1}^{N} E_{ ext{third}} \left(\hat{f}, \mathbf{x}^{\{i\}}
ight)$$

Data Sampling for PINN Model

Uniform random sampling of labeled points from the interpolation region and collocation points from the extrapolation region

Loss Function Example:

$$\begin{split} \mathcal{L} &= \frac{1}{N} \sum_{i=1}^{N} L\left(\hat{f}, \mathbf{x}^{\{i\}}\right) \text{ where} \\ L\left(\hat{f}, \mathbf{x}^{\{i\}}\right) &= \begin{cases} \left(f\left(\mathbf{x}^{\{i\}}\right) - \hat{f}\left(\mathbf{x}^{\{i\}}\right)\right)^{2} + \lambda E_{\text{third}}\left(\hat{f}, \mathbf{x}^{\{i\}}\right) & \text{if } \mathbf{x}^{\{i\}} \in \Omega_{\text{int}} \\ \lambda E_{\text{third}}\left(\hat{f}, \mathbf{x}^{\{i\}}\right) & \text{if } \mathbf{x}^{\{i\}} \in \Omega_{\text{ext}} \end{cases} \end{split}$$

Gradient Regularizer Results

Further Results

Interpolation Region

Extrapolation Region

Error Avg*

Error Avg*

1.79E-3

3.02E-3

(2500 labeled Int, 7500 collocation Ext		
	1.39E-3	
	3.00E-3	

23

Target Function: Wave equation

First Order System of Wave Equation

$$\frac{\partial p}{\partial t} + \kappa \nabla \cdot \mathbf{v} = 0$$

$$\frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\rho} \nabla p = 0$$

Variables

p = pressure

 $\mathbf{v} = \text{velocity}$

 $\rho = \text{density}$

 $\kappa = \text{bulk modulus of compressibility}$

Reflective Boundary Conditions

$$\mathbf{v}_n = 0$$

Simulation

- Gaussian Initialization
- Data from simulation used as input for Neural Network
- Interpolation for $t \in [0, 1)$
- Extrapolation for $t \in [1, 2]$

Simulation

- Gaussian Initialization
- Data from simulation used as input for Neural Network
- Interpolation for $t \in [0, 1)$
- Extrapolation for $t \in [1, 2]$

Baseline

Simulation(p)

 $\operatorname{Model}(\hat{p})$

$$t = 0.60$$

$$t = 0.80$$

$$t = 1.00$$

Baseline

$$\mathcal{L} = MSE$$

Neural Networks

$$\hat{f}(x, y, t) = \hat{f}(\mathbf{x}) = (\hat{p}, \hat{u}, \hat{v})$$

RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (f(\mathbf{x}^{\{i\}}) - \hat{f}(\mathbf{x}^{\{i\}}))^2}$$

Physics-Informed Neural Network

First Order Equations

$$\frac{\partial p}{\partial t} + \kappa \nabla \cdot \mathbf{v} = 0$$

$$\frac{\partial \mathbf{v}}{\partial t} + \frac{1}{\rho} \nabla p = 0$$

First Order Regularizer

$$E_{\text{first}}(\hat{f}, \mathbf{x}^{\{i\}}) = \left| \hat{p}_t(\mathbf{x}^{\{i\}}) + \kappa \nabla \cdot \langle \hat{u}(\mathbf{x}^{\{i\}}), \hat{v}(\mathbf{x}^{\{i\}}) \rangle \right|$$

$$+ \left\| \langle \hat{u}_t(\mathbf{x}^{\{i\}}), \hat{v}_t(\mathbf{x}^{\{i\}}) \rangle + \frac{1}{\rho} \nabla \hat{p}(\mathbf{x}^{\{i\}}) \right\|$$

Second Order Regularizer

$$E_{\text{second}}(\hat{f}, \mathbf{x}^{\{i\}}) = \left| \hat{p}_{tt}(\mathbf{x}^{\{i\}}) - c(\hat{p}_{xx}(\mathbf{x}^{\{i\}}) + \hat{p}_{yy}(\mathbf{x}^{\{i\}})) \right|$$

Second Order

Boundary Conditions

$$\mathbf{v}_n = \mathbf{0}$$

$$E_{\text{bound}} = \begin{cases} |\hat{u}| & \text{if } x = 0, x = 1\\ |\hat{v}| & \text{if } y = 0, y = 1\\ 0 & \text{otherwise} \end{cases}$$

Interpolation Results

Interpolation results

Extrapolation Results

Extrapolation Results

Errors for Wave

	Pure Interpolation	Gradient Regularizers
Interpolation Region Error	6.0E-4	1.04E-2
Extrapolation Region Error	1.66E-1	2.33E-2

Source Location as an Input

Previous model:

$$\hat{f}(x, y, t) = (\hat{p}, \hat{u}, \hat{v})$$

New model:

$$\hat{f}(0.5, 0.5, x, y, t) = (\hat{p}, \hat{u}, \hat{v})$$

Source Location as an Input

Previous model:

$$\hat{f}(x, y, t) = (\hat{p}, \hat{u}, \hat{v})$$

New model:

$$\hat{f}(0.75, 0.35, x, y, t) = (\hat{p}, \hat{u}, \hat{v})$$

Training Data

Combined 5 simulations, each with different source locations for dataset

A Preliminary Result

Source: (0.8, 0.9)

Comparing Error

Avg. error = 0.89

Avg. error = 0.77

Comparing Error

$$E_{\text{no_grad}} - E_{\text{grad}}$$

- Blue gradient regularizer lowers error
- Red gradient regularizer does not lower error

A simple question

Problem:

- Even PINNs can't extrapolate beyond extrapolation region
 - Need collocation points

Question:

- Is it possible for a neural network to extrapolate indefinitely?
- If not, can we predict which regions a model fails?

Paraboloid Revisited

Paraboloid: $f(x,y) = x^2 + y^2$

PINN: $\hat{f}(x,y)$

Taking a bird's eye view...

- NNs failure to extrapolate is <u>systematic</u>
- NNs <u>tune</u> to their training region

Paraboloid: $f(x,y) = x^2 + y^2$

Large scale → reduce to <u>trivial</u> function
 Determined by activation

PINN: $\hat{f}(x,y) \approx |x| + |y|$ (using elu)

Taking a bird's eye view...

- NNs failure to extrapolate is <u>systematic</u>
- NNs tune to their training region

Paraboloid: $f(x,y) = x^2 + y^2$

- Large scale → reduce to <u>trivial</u> function
 - Determined by activation

PINN: $\hat{f}(x,y) = O(1)$ (using tanh)

What causes NNs to reduce?

- Neurons <u>"saturate"</u> from large input
 - End behavior
- Neurons <u>tune</u> their "active range" to training region
- Key Idea:

Modeling a complex target requires unsaturated neurons

Hypothesis:

NN saturated → NN will extrapolate poorly

We develop a <u>saturation measure</u>

Saturation across domain: Paraboloid

- Saturation of first layer
 - o On [-4, 4] square
 - Average of 5 runs

Saturation across domain: Paraboloid

Saturation: Parabola vs Cubic

Paraboloid Difference

<u>Cubic</u> <u>Difference</u>

Conclusion

- Modeled paraboloid with higher extrapolation accuracy than pure interpolation
- Successfully extrapolated wave equation using PINNs
- Created model that predicts behavior of wave with different source locations
- Developed metric for measuring saturation of neuron weights

Thank you so much to Laurent, Kyung, the whole AMD team, and IPAM!

Questions?

Physical Constraints

$$f(x,y) = c_1 x^2 + c_2 y^2$$

Second Order Partials

$$egin{aligned} f_{xx} &= 2c_1 \ f_{yy} &= 2c_2 \ f_{xy} &= 0 = f_{yx} \end{aligned}$$

First Order Partials

$$egin{aligned} f_x &= 2c_1x \ f_y &= 2c_2y \end{aligned}$$

Second Order Regularizer

$$E_{\text{second}}\left(\hat{f}, \mathbf{x}\right) = \text{Var}\left(\hat{f}_{xx}(\mathbf{x})\right) + \text{Var}\left(\hat{f}_{yy}(\mathbf{x})\right) + 2\text{Var}\left(\hat{f}_{xy}(\mathbf{x})\right)$$

$$\approx 0$$

First Order Regularizer

$$E_{\text{first}}\left(\hat{f}, \mathbf{x}\right) = \text{Var}\left(\frac{\hat{f}_x(\mathbf{x})}{x}\right) + \text{Var}\left(\frac{\hat{f}_y(\mathbf{x})}{y}\right)$$

$$\approx 0$$

Further Results

3.02E-3

2.53E-3

55

9.40E-4

Extrapolation

Region Error Avg*

Gradual Loss Change

$$\mathcal{L} = MSE + \lambda_{reg} E_{reg}$$

Learning Rate Change

$$w_{k+1} = w_k - \alpha \nabla \hat{f}(w_k)$$

Data Sampling

- Various parameters regarding data preprocessing
 - Interior vs. Boundary
 - Interpolated vs. Extrapolated
 - o Randomly vs. Uniformly
- Sample again for test points

Adding More Boundary Points

Error/interpolation error (t <= 1)

Gradient regularizers:

- Boundary added at 400
- First order added at 900

$$\mathcal{L} = ext{MSE} + \frac{\lambda_{ ext{bound}} E_{ ext{bound}}}{\lambda_{ ext{first}} E_{ ext{first}}} + \frac{\lambda_{ ext{first}} E_{ ext{first}}}{\lambda_{ ext{first}} E_{ ext{first}}}$$

Github and Config files

Code Organization/Collaboration

Coding process:

- Small changes can be made on individual machine
- Large changes are made in a branch
- All merged into main branch

Experiment Management

- Config files
 - <u>many</u> levers to adjust

```
###############
# Training #
###############
device: apu
trials: 1
seed: 0
epochs: 300
batch_size: 256
lr: 1.0e-4
lr scheduler: true
lr scheduler type: piecewise linear
lr_scheduler_params: [1.0e-3, 1.0e-6, 100, 200]
gd_noise: 0.0
from tensor slices: true
shuffle: true
```

```
################
# Dataset #
################
source: synthetic
target: parabola
target_coefficients: [1.0, 1.0]
corners: false
dataset: [2500, 7500, 0, 1.0, 0.0]
noise: 0.0
############
# Model #
###########
activation: swish
dropout_rates: 0.0
layers: [2, 30, 30, 30, 30, 1]
```

```
####################
# Regularizers #
####################
regularizer: none
reg_const: 0.1
gradient loss:
                            # which data to apply to
  - region: all
    name: second
                            # id of gradient regularizer
   weight: 1
                            # start_weight, end_weight
grad_reg_const: 1
loss schedulerizer: false
# loss schedulerizer params: [2000, 2400] #[Begin adding
################
# Logging #
##############
debug: false
output dir: null # overridden in main.pv
output_root: output/toy
plots: [extrapolation, data-distribution, tensorboard]
saves: [model]
tb_error_timestep: 20
tb loss timestep: 5
```

Measuring saturation (cont.)

Goal: Quantify saturation of a layer
 I with input x

Saturation of layer:

$$\mu_l = \frac{1}{\# \text{ nodes}} \sum_{\substack{\text{node } n \\ \text{in layer } l}} \mu_n$$

Error Analysis

Test set sources

Heatmap of error on Dataset 2 (random)

Error Analysis

RMSE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (f(x_s, y_s, \mathbf{x}^i) - \hat{f}(x_s, y_s, \mathbf{x}^i))^2}$$

Test set sources

Heatmap of error

Different Training Data

Uniform source points (Dataset 1)

Random source points (Dataset 2)

Saturation across domain: Paraboloid

Saturation across domain: Cubic

