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Scientific Computing Meets Machine Learning

Scientific computing community
• Sees opportunity for revolutionary improvement

A revolution: deep neural networks for cognitive tasks

Decades of incremental progress in scientific computing

Accelerating scientific applications with 
machine learning (“AI for Science”)

Machine learning community
• Building on prior success, wants to expand

weather / climate modeling fluid dynamics computational chemistry

Improving Extrapolation Capabilities via Regularization: developing a strategy 
based on a two-dimensional function (paraboloid)

Improving Extrapolation Capabilities via Regularization: two-dimensional 
acoustic wave equation

Neural-network-based physics emulators suffer from lack of extrapolation capabilities.  Exploring physics-
based regularization to address this challenge.

Goal: improve accuracy of neural network in extrapolation region 
while only using labeled data in interpolation region

interpolation region

extrapolation region

Baseline: using labeled data in interpolation region −𝟏, 𝟏 × −𝟏, 𝟏 and no 
regularization

Loss function:

Target function NN prediction Absolute error

Adding third-order regularizer in −𝟐, 𝟐 × −𝟐, 𝟐

Int.
Ext.

Target function Baseline (no regularization)
Ext. error: 8.46×10!"

Third-order regularizer
Ext. error: 1.90×10!#

Future work

Goal: improve accuracy of neural network in extrapolation 
region (𝑡 > 1) while only using labeled data in interpolation 
region (𝑡 ≤ 1).

Develop a posteriori error estimates and more efficient sampling strategies based on saturation.  

The figure below shows the difference in layer-wise saturation between the physics-informed NN and the 
baseline NN for the paraboloid target function.  Negative values across the first two layers indicate that the 
PINN is less saturated in the extrapolation region (and therefore, more effective).  This behavior could be 
leveraged to develop a posteriori error estimates or more efficient sampling strategies

The figure below shows simulation snapshots and an example of data collection (here for t = 0.56), where 
markers inside the domain denote locations for labeled data while markers on the boundary (blue markers) 
denote locations where a boundary-condition regularizer can be applied.

Loss function:

Mean squared error 
based on labeled data

Boundary-condition 
regularizer (not based 

on labeled data)

PDE-based regularizer 
(not based on labeled 

data)

The table below shows the performance of various physics-based regularization strategies (average of five 
runs, standard deviation shown in parentheses). PINN = Physics-informed neural network.

• Reflecting boundary conditions (𝑣$ = 0)

• Labeled data: simulation data sampled in space every 10th step for 𝑡 ≤ 1 (time step is 0.001). Spatial 
samples based on random selection of 1% of discretization points (see Figure below).

• 10% of boundary points are also selected, where a boundary-condition regularizer can be applied.

The figure below compares the extrapolation performance between simulation (left column) and 
predictions from neural networks trained with different regularization strategies.

(*) These five authors contributed equally.  Work performed while undergraduate students Davini, Samineni, Thomas, Tran, and Zhu attended UCLA/IPAM’s Research in Industrial Projects for Students summer program (Ha and White were academic and industrial mentors, respectively).

Augmenting the loss function with physics-based regularization terms that do not depend on labeled dataSeeking to regularize the neural network based on information embedded in the function we’re trying to 
predict, yet without using additional labeled data.  Two examples:

“All second derivatives are constant” “All third derivatives are zero”

Loss function:


